
Problem set 4, 18.12.2023 ME-390, Fall 2023 Prof. Maryam Kamgarpour

Exercise 1. (Gridworld)
Consider the gridworld setup, in which an agent (for example, a robot) is moving in a 2D plane.
The plane is modeled by a discrete grid, as shown in Figure 1. We refer to the bottom left corner
as (1,1) and the top right corner as (3,3). The initial distribution is ρ((1, 1)) = 1, which means
that the agent starts in cell (1,1) with probability 1. The agent can choose from four actions:
A = {‘up’, ‘down’, ‘left’, ‘right’}. When the agent arrives at cell (3, 1) for any action a ∈ A, the
agent receives a reward of 1. When the agent arrives at cell (3, 2) for any action a ∈ A, the
agent receives a reward of 8. The gray walls and the gridworld boundary block the agent’s path,
specifically the wall on cell (2,2). The agent’s actions do not always go as planned:

1) 85% of the time, the agent takes the intended action.
2) 15% of the time, the agent uniformly takes any of the other three actions.
3) If there is a wall in the direction the agent would have taken, the agent remains in place.

Once the agent reaches a rewarded cell, it stays there forever, i.e., those are terminal states.
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Figure 1: Gridworld

1. For the states s = (1, 1) and s = (1, 2), determine the transition probabilities P (·|s, a) for any
a ∈ A.
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Solution: For the state s = (1, 1), the transition probabilities are

P (s′|s, a) a = ‘up’ a = ‘down’ a = ‘left’ a = ‘right’

s′ = (1, 1) 0.1 0.9 0.9 0.1
s′ = (1, 2) 0.85 0.05 0.05 0.05
s′ = (2, 1) 0.05 0.05 0.05 0.85

.

For the state s = (1, 2), the transition probabilities are

P (s′|s, a) a = ‘up’ a = ‘down’ a = ‘left’ a = ‘right’

s′ = (1, 2) 0.1 0.1 0.9 0.9
s′ = (1, 3) 0.85 0.05 0.05 0.05
s′ = (1, 1) 0.05 0.85 0.05 0.05

.

2. Using direct parametrization of the policy, πθ(a|s) = θs,a, how many parameters are there?
What is the possible range for each parameter?

Solution: We need a parameter for each state action pair (s, a) ∈ S × A. There are 8 states
(S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (3, 3)}) and four actions. Hence, there are
|S||A| = 32 parameters.

For each parameter θs,a, we need to ensure it satisfies the following condition:

0 ≤ θs,a ≤ 1,
∑
a′∈A

θs,a′ = 1.

Comment: It would also be correct to use 36 parameters where we consider 9 states including
the gray cell.
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3. Using softmax parametrization of the policy, πθ(a|s) = exp(θs,a)∑
a′∈A exp(θs,a′)

, how many parameters

are there?

Solution: Similarly to Problem 2, we need 32 parameters (or 36 when counting the gray grid
cell as a state).

4. From now on, we will always assume the policy is parameterized with softmax. We initialize
the parameters as θ = 0 ∈ R|S||A|. What is the initial policy?

Solution: It is a uniform distribution over the action set {‘up’, ‘down’, ‘left’, ‘right’} as

πθ(a|s) =
exp (θs,a)∑

a′∈A exp
(
θs,a′

) =
exp (0)∑

a′∈A exp (0)
=

1

4
.

5. Next, we consider two trajectories sampled from the initial softmax policy and truncated to
a horizon H = 7. The first trajectory τ1 is given by

(1, 1) −→
up

(1, 2) −→
up

(1, 3) −−−→
right

(2, 3) −−−→
right

(3, 3) −−−→
right

(3, 3) −−−→
down

(3, 2) −−−→
down

(3, 2) −−→
left

.

The second trajectory τ2 is given by

(1, 1) −−−→
right

(2, 1) −−−→
right

(1, 1) −−−→
right

(2, 1) −−−→
right

(3, 1) −−−→
right

(3, 1) −−−→
right

(3, 1) −−−→
right

(3, 1) −→
up

.

For each trajectory τ := {s0, a0, s1, a1, . . . , sH , aH}, the discounted reward is computed as
R(τ) :=

∑H
t=0 γ

tr(st, at), where r(st, at) denotes the reward at each step along the trajectory.

The probability of choosing τ is Pr(τ) = ρ(s0)πθ(a0|s0)
∏H−1

t=1 P (st|st−1, at−1)π(at|st). What
are the probabilities of choosing τ1 and τ2? What are the discounted rewards for these
trajectories?
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Continue here
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Solution: The probability of choosing the first trajectory τ1 is

Pr(τ1) = ρ((1, 1))︸ ︷︷ ︸
1

π(up|(1, 1))︸ ︷︷ ︸
0.25

P ((1, 2)|(1, 1), up)︸ ︷︷ ︸
0.85

π(up|(1, 2))︸ ︷︷ ︸
0.25

P ((1, 3)|(1, 2), up)︸ ︷︷ ︸
0.85

π(right|(1, 3))︸ ︷︷ ︸
0.25

×

× P ((2, 3)|(1, 3), right)︸ ︷︷ ︸
0.85

π(right|(2, 3))︸ ︷︷ ︸
0.25

P ((3, 3)|(2, 3), right)︸ ︷︷ ︸
0.85

π(right|(3, 3))︸ ︷︷ ︸
0.25

×

× P ((3, 3)|(3, 3), right)︸ ︷︷ ︸
0.9

π(down|(3, 3))︸ ︷︷ ︸
0.25

P ((3, 2)|(3, 3), down)︸ ︷︷ ︸
0.85

π(down|(3, 2))︸ ︷︷ ︸
0.25

×

× P ((3, 2)|(3, 2), down)︸ ︷︷ ︸
1

π(left|(3, 2))︸ ︷︷ ︸
0.25

≈ 6.1 · 10−6.

Similarly, for trajectory τ2 we have

Pr(τ2) = 1 · 0.25 · 0.85 · 0.25 · 0.05 · 0.25 · 0.85 · 0.25 · 0.85 · 0.25 · 1 · 0.25 · 1 · 0.25 · 1 · 0.25
≈ 4.7 · 10−7.

The discounted reward for the first trajectory τ1 is

R(τ1) = 8(γ6 + γ7).

The discounted reward for the second trajectory τ2 is

R(τ2) = γ4 + γ5 + γ6 + γ7 =
γ4(1− γ4)

1− γ
.

6. Calculate ∇θ log πθ(a|s).
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Solution: The components of ∇θ log πθ(a|s) ∈ R|S||A| are ∂ log πθ(a|s)
∂θs′,a′

for all s′ ∈ S and all

a′ ∈ A. The partial derivatives with respect to the parameter θs′,a′ can be computed as

∂ log πθ(a|s)
∂θs′,a′

=
∂

∂θs′,a′

(
log

exp (θs,a)∑
a′ exp

(
θs,a′

)) (by definition of softmax policy parameterization)

=
∂

∂θs′,a′

(
θs,a − log

∑
a′

exp
(
θs,a′

))
(by additive property of logarithmic function)

=1(s,a)=(s′,a′) − 1s=s′
exp

(
θs,a′

)∑
a′ exp

(
θs,a′

) (basic derivative rules)

=1(s,a)=(s′,a′) − 1s=s′πθ(a
′|s) (by definition of softmax policy parameterization)

=1s=s′
(
1a=a′ − πθ(a

′|s)
)

(take 1s=s′ outside of the equation).

Thus,

∇θ log πθ(a|s) = {1s=s′
(
1a=a′ − πθ(a

′|s)
)
}(s′,a′)∈S×A. (0.1)

Reminder: Here, we denote 1A as an indicator function, which equals 1 when event A happens
and 0 otherwise.

Example:

∇θ(1,1),up log πθ(up|(1, 2)) = 1(1,1)=(1,2) (1up=up − πθ(up|(1, 1))) = 0,

∇θ(1,1),up log πθ(up|(1, 1)) = 1(1,1)=(1,1) (1up=up − πθ(up|(1, 1))) = 1− πθ(up|(1, 1)),
∇θ(1,1),down

log πθ(up|(1, 1)) = 1(1,1)=(1,1) (1down=up − πθ(down|(1, 1))) = −πθ(down|(1, 1)).

7. Consider a discount factor of γ = 0.8 and the parameter θ = 0. Based on the two aforemen-
tioned trajectories, τ1 and τ2, provided in Problem 5, compute the stochastic policy gradient

∇̂θ(1,1),aJ(πθ) =
1

2

2∑
i=1

(
H∑
t=0

γtr(sit, a
i
t)

)
︸ ︷︷ ︸

R(τi)

(
H∑
t=0

∇θ log πθ(a
i
t|sit)

)
,

for the state s = (1, 1), actions a ∈ A, and the horizon H = 7.
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Continue here:
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Continue here:
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Solution: Using the trajectories defined in Problem 5, we first calculate for i = 1, 2:

(
∇̂θ(1,1),aJ(πθ)

)
i
=

(
H∑
t=0

γtr(sit, a
i
t)

)
︸ ︷︷ ︸

R(τi)

(
H∑
t=0

∇θ log πθ(a
i
t|sit)

)
,

For the first trajectory, we get
∇̂θ(1,1),upJ(πθ)

∇̂θ(1,1),down
J(πθ)

∇̂θ(1,1),leftJ(πθ)

∇̂θ(1,1),rightJ(πθ)


1

= R(τ1)×


7∑

t=0


∇θ(1,1),up log π(at|st)
∇θ(1,1),down

log π(at|st)
∇θ(1,1),left log π(at|st)
∇θ(1,1),right log π(at|st)




= 8
(
γ6 + γ7

)
×


∇θ(1,1),up log π(up|(1, 1))
∇θ(1,1),down

log π(up|(1, 1))
∇θ(1,1),left log π(up|(1, 1))
∇θ(1,1),right log π(up|(1, 1))



= 8
(
γ6 + γ7

)
0.75
−0.25
−0.25
−0.25

 ≈


2.83
−0.94
−0.94
−0.94

 ,

The second equation utilizes the formula from (0.1), which equals 0 if the state st ̸= (1, 1).
In the first trajectory, only the initial state visits the state (1,1). Hence, the summation from
t = 1 to t = 7 amounts to computing t = 1 since the remaining terms are equal to 0. The
third equation involves substituting the policy values into the aforementioned equation (0.1).

And for the second trajectory
∇̂θ(1,1),upJ(πθ)

∇̂θ(1,1),down
J(πθ)

∇̂θ(1,1),leftJ(πθ)

∇̂θ(1,1),rightJ(πθ)


2

= R(τ2)×


7∑

t=0


∇θ(1,1),up log π(at|st)
∇θ(1,1),down

log π(at|st)
∇θ(1,1),left log π(at|st)
∇θ(1,1),right log π(at|st)




=
2γ4(1− γ4)

1− γ
×


∇θ(1,1),up log π(right|(1, 1))
∇θ(1,1),down

log π(right|(1, 1))
∇θ(1,1),left log π(right|(1, 1))
∇θ(1,1),right log π(right|(1, 1))



=
2γ4(1− γ4)

1− γ


−0.25
−0.25
−0.25
0.75

 ≈

−0.60
−0.60
−0.60
1.81

 .

The factor of 2 in the second equation arises because the agent visits state (1,1) twice and
takes the same action, ’right,’ on both occasions.
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Hence, the stochastic policy gradient is given by
∇̂θ(1,1),upJ(πθ)

∇̂θ(1,1),down
J(πθ)

∇̂θ(1,1),leftJ(πθ)

∇̂θ(1,1),rightJ(πθ)

 =
1

2

2∑
i=1


∇̂θ(1,1),upJ(πθ)

∇̂θ(1,1),down
J(πθ)

∇̂θ(1,1),leftJ(πθ)

∇̂θ(1,1),rightJ(πθ)


i

≈


1.12
−0.77
−0.77
0.44

 .

8. Assuming θ = 0 ∈ R|S||A|, compute the stochastic policy gradient update

θ(1,1),a ← θ(1,1),a + α∇̂θ(1,1),aJ(πθ), θ(1,1),a ∈ R1,

for the state s = (1, 1) and every action a ∈ A with α = 0.1. Moreover, compute the updated
policy for s = (1, 1).
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Solution: According to the above update rule, we can compute the updated θ(1,1),a, a ∈ A as


θ(1,1),up
θ(1,1),down

θ(1,1),left
θ(1,1),right

 =


0
0
0
0

+ 0.1


∇̂θ(1,1),upJ(πθ)

∇̂θ(1,1),down
J(πθ)

∇̂θ(1,1),leftJ(πθ)

∇̂θ(1,1),rightJ(πθ)

 ≈


0.112
−0.077
−0.077
0.044

 .

This yields to the following updated policy for the state s = (1, 1)

πθ(up|(1, 1)) =
exp

(
θ(1,1),up

)∑
a′ exp

(
θ(1,1),a′

) ≈ 0.28,

πθ(down|(1, 1)) ≈ 0.23, πθ(left|(1, 1)) ≈ 0.23, πθ(right|(1, 1)) ≈ 0.26.

9. Now, assume that there is no noise, i.e., the agent always moves in the intended direction if
the action leads to a free cell and otherwise stays in its previous cell. What are the discounted
sums of rewards for the red and blue trajectory (for an infinite horizon)? How to choose γ to
ensure that the blue trajectory is preferred over the red one?
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Solution: The discounted sum of rewards for the blue trajectory is

R(τblue) =
∞∑
t=2

γt =
γ2

1− γ
.

The discounted sum of rewards for the red trajectory is

R(τred) = 8

∞∑
t=5

γt =
8γ5

1− γ
.

If R(τblue) > R(τred), then the blue trajectory is preferred compared to the red trajectory,
otherwise the red trajectory is preferred compared to the blue trajectory. Therefore, the red
trajectory is preferred when 1 > γ > 1

2 and the blue trajectory is preferred when 1
2 > γ > 0.
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