Problem set 4, 18.12.2023 ME-390, Fall 2023 Prof. Maryam Kamgarpour

Exercise 1. (Gridworld)
Consider the gridworld setup, in which an agent (for example, a robot) is moving in a 2D plane.
The plane is modeled by a discrete grid, as shown in Figure [II We refer to the bottom left corner
as (1,1) and the top right corner as (3,3). The initial distribution is p((1,1)) = 1, which means
that the agent starts in cell (1,1) with probability 1. The agent can choose from four actions:
A = {‘up’, ‘down’, ‘left’, ‘right’}. When the agent arrives at cell (3, 1) for any action a € A, the
agent receives a reward of 1. When the agent arrives at cell (3, 2) for any action a € A, the
agent receives a reward of 8. The gray walls and the gridworld boundary block the agent’s path,
specifically the wall on cell (2,2). The agent’s actions do not always go as planned:

1) 85% of the time, the agent takes the intended action.

2) 15% of the time, the agent uniformly takes any of the other three actions.

3) If there is a wall in the direction the agent would have taken, the agent remains in place.
Once the agent reaches a rewarded cell, it stays there forever, i.e., those are terminal states.

Figure 1: Gridworld

1. For the states s = (1,1) and s = (1, 2), determine the transition probabilities P(-|s,a) for any
ac A
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Solution: For the state s = (1, 1), the transition probabilities are

P(s'|s,a) | a="*up’ | a="‘down’ | a ="‘left’ | a = ‘right’
s =(1,1)] 01 0.9 0.9 0.1
s =(1,2) 0.85 0.05 0.05 0.05
s =(2,1) 0.05 0.05 0.05 0.85
For the state s = (1,2), the transition probabilities are
P(s'|s,a) | a="*up’ | a="‘down’ | a ="left’ | a = ‘right’
s =(1,2)| o1 0.1 0.9 0.9
s =(1,3) 0.85 0.05 0.05 0.05
s =(1,1) 0.05 0.85 0.05 0.05

2. Using direct parametrization of the policy, mp(als) = 6,4, how many parameters are there?

What is the possible range for each parameter?

Solution: We need a parameter for each state action pair (s,a) € S x A. There are 8 states
(S ={(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)}) and four actions. Hence, there are

|S||.A|] = 32 parameters.

For each parameter 65 ,, we need to ensure it satisfies the following condition:

0< Hs,a < 17 Z es,a’ =1

Comment:
the gray cell.

a’eA

It would also be correct to use 36 parameters where we consider 9 states including
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3. Using softmax parametrization of the policy, mp(als) = exp(0s.0) , how many parameters

N ) - Za’E.A exp(@syal)
are there!

Solution: Similarly to Problem 2, we need 32 parameters (or 36 when counting the gray grid
cell as a state).

4. From now on, we will always assume the policy is parameterized with softmax. We initialize
the parameters as § = 0 € RIS/l What is the initial policy?

Solution: It is a uniform distribution over the action set {‘up’, ‘down’, ‘left’, ‘right’} as

ro(als) = 2P 0sa) 0@ 1

Dweaexp (Osw)  Lacaexp(0) 4

5. Next, we consider two trajectories sampled from the initial softmax policy and truncated to
a horizon H = 7. The first trajectory 7 is given by

1,1 1,2 1 2 > — 2 2 .
( ’ )$>( ’ )?( 73) right ( 73) right (37 3) right (373) down (37 ) down (37 )Q

The second trajectory 75 is given by

1,1 2,1 > (1,1) — (2,1) — (3,1 3,1 3,1) — (3,1) —.
( ) right ( ) right ( ) right ( ) right ( ) right ( ) right ( ) right ( ) up
For each trajectory 7 := {sq,aq, s1,0a1,...,8m,an}, the discounted reward is computed as

R(7) := "L, Atr(se, ar), where (s, a;) denotes the reward at each step along the trajectory.
The probability of choosing 7 is Pr(7) = p(so)mg(ao|so) Hfsl P(s¢|st—1,at—1)m(at|st). What
are the probabilities of choosing 71 and 7?7 What are the discounted rewards for these
trajectories?
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Continue here
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Solution: The probability of choosing the first trajectory m; is

Pr(r1) = p((1,1)) w(up[(1,1)) P((1,2)|(1,1), up) w(up|(1,2)) P((1,3)[(1,2), up) (right|(1, 3)) x

/

1 0.25 0.85 0.25 0.85 0.25
« P((2,3)[(1,3), right) 7(right|(2, 3)) P((3,3)|(2,3), right) 7 (right|(3,3)) x
0.85 0.25 0.85 0.25
x P((3,3)|(3,3), right) 7(down|(3,3)) P((3,2)|(3,3), down) 7(down|(3, 2)) x
0.9 0.25 0.85 0.25
x P((3,2)[(3,2), down) m(left|(3,2)) ~ 6.1-107°.
1 0.25

Similarly, for trajectory 7o we have

Pr(m)=1-0.25-0.85-0.25-0.05-0.25-0.85-0.25-0.85-0.25-1-0.25-1-0.25-1-0.25
~4.7-1077.
The discounted reward for the first trajectory 7 is
R(n) =8(+° +7").
The discounted reward for the second trajectory 7o is
71 =99

Brm) =" +7" +1 +1T = =

6. Calculate Vylogmg(als).
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Solution: The components of Vglogmy(als) € RISIMI are aba‘g;%f’(?‘s) for all ' € § and all

a’ € A. The partial derivatives with respect to the parameter 6y , can be computed as

0log my(als)

00y
0 0
=—— | log M (by definition of softmax policy parameterization)
805,7(1’/ Za’ exp (0870‘,)
0 . . . .
=50 0s,q — log Z exp (95@/) (by additive property of logarithmic function)
s’ ,a’ 7
a
exp (93 a’) . ..
=1(sa)=(s'.a/) — ls=g = (Dbasic derivative rules
(s,a)=(s",a’) s=s Za/ exp (95’(1/) ( 1c derivative ru )
=1(s0)=(s",a’) — Ls=s'Tg (a']s) (by definition of softmax policy parameterization)
=1,y (1a:a/ — Wg(a’\s)) (take 14—y outside of the equation).
Thus,
VG IOg 7r9(a|s) = {]-s:s’ (1a:a’ - 779(@/|8))}(5’,a’)63><¢4' (01)

Reminder: Here, we denote 1 4 as an indicator function, which equals 1 when event A happens
and 0 otherwise.

Example:

Vo 1w 108 mo(up[(1,2)) = 11 1)=(1,2) (Lup=up — To(up|(1,1))) =0,
Vo1 108 To(up| (1, 1)) = L(1,1)=(1,1) (Tup=up — To(up|(1,1))) = 1 — mp(up|(L, 1)),
v0(1,1),down log W@(up‘(l, 1)) = 1(171):(1,1) (1d0wn:up — F@(dOWIlKl, 1))) = —7T9(dOWIl|(1, 1))

7. Consider a discount factor of v = 0.8 and the parameter § = 0. Based on the two aforemen-
tioned trajectories, 71 and 7o, provided in Problem 5, compute the stochastic policy gradient

2 H H
~ 1 . L.
Vo (1) = 5 (Z vtr(Sf:,aé)) (2 Yy log ma@rs;)) ,
=1

% t=0 t=0

R(i)

for the state s = (1,1), actions a € A, and the horizon H = 7.
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Continue here:
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Continue here:
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Solution: Using the trajectories defined in Problem 5, we first calculate for i = 1, 2:

H H
(s ten), = (S rth ) (3 Sotoemte )
t=0 t=0

R(m;)

For the first trajectory, we get

, ),up‘](’m)) v9(1,1),up logﬂ(at|8t)

VAQ(I,l),downJ(ﬂ-e) — R(Tl) X Z ve(l,l),down logﬂ-(a‘t‘st)
Vo J(mg) Vo11).1et 108 m(a|st)

R (1,1),left =0
ve(l,l),rightJ(Tre) 1 ve(l,l),right logﬂ—(at‘st)
v9(1,1),up 10g Tr(up| (]‘7 1))
— 8 (76 + ,}/7) X v9(1,1),down log ﬂ-(up‘(17 1))
v9(1,1),1eft log m(up|(1,1))

Va(l,l)might log W(up‘(]‘? 1))
0.75 2.83

—025| _ | —0.94

025 T | -0.94]"
—0.25 —0.94

=38 (76 +77)

The second equation utilizes the formula from (0.1)), which equals 0 if the state s; # (1,1).
In the first trajectory, only the initial state visits the state (1,1). Hence, the summation from
t =1 tot =7 amounts to computing ¢t = 1 since the remaining terms are equal to 0. The
third equation involves substituting the policy values into the aforementioned equation (0.1]).

And for the second trajectory

Vo 1.0 (76) Vo, . logm(at|s;)
A 7 (1,1),up
v0(171)7downJ(7r9) — V9(1,1),(10wn ].Ogﬂ-(at’St)
2 = R(Tg) X v 1
Ava(l,l),left‘](ﬂ-9> =0 9(1,1)yleft Ogﬂ-(at|st)
V9(1,1),1rightt](ﬂ—0> 2 v0(1,1),1‘ight logﬂ-(atyst)

Vo1 up 108 ﬂ(right](l, 1)
_ 2v4(1 — %) y V0(11) down 108 T(right[(1, 1

)
)
)

11—+ Vo1 1) e, 108 (right[(1, 1)
V9(1,1),right log m(right|(1, 1))
—0.25 —0.60
291 —9Y) [-0.25] _ [ -0.60
11—~ —-0.25 | © | —0.60
0.75 1.81

The factor of 2 in the second equation arises because the agent visits state (1,1) twice and
takes the same action, 'right,” on both occasions.
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Hence, the stochastic policy gradient is given by

Aﬁa(lvl)»upj(ﬂ-e) 9 A@Q(l,l),up!](ﬂ-e) 112
Vﬁ(l,l),down‘](ﬂe) _12 VAH(I,l),downJ(ﬂ-e) O

Ya(l,l),leftj(ﬂ—e) S 2 —1 Av9(1,1),1eft‘](7r@) | -0.77

Va(l,l),rightj(ﬂ—e) V9(1,1),right‘](7r9) i 044

8. Assuming 6 = 0 € RISIMI compute the stochastic policy gradient update
9(171)7(1 — 9(171)@ + O‘@O(Ln,a‘](ﬂe)’ 9(1,1)@ c R:l’

for the state s = (1,1) and every action a € A with o = 0.1. Moreover, compute the updated
policy for s = (1,1).

10
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Solution: According to the above update rule, we can compute the updated 6(; 1y 4, a € A as

0(1,1),up 0 Vo). (T6) 0.112
0(1,1),down N Vo1 aown? () | | =0.077
01,1) et 0 Vo1 e (70) —0.077
0(1,1) right 0 J () 0.044

Vo,

right
This yields to the following updated policy for the state s = (1, 1)
exp (6(1,1).up)

Za/ exp (6(171)@/)
mo(down|(1, 1)) &~ 0.23, my(left|(1,1)) = 0.23, my(right|(1,1)) ~ 0.26.

mo(up|(1,1)) = ~ 0.28,

9. Now, assume that there is no noise, i.e., the agent always moves in the intended direction if
the action leads to a free cell and otherwise stays in its previous cell. What are the discounted
sums of rewards for the red and blue trajectory (for an infinite horizon)? How to choose 7y to
ensure that the blue trajectory is preferred over the red one?

11
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Solution: The discounted sum of rewards for the blue trajectory is

2

0o
R(Tblue) = Z’yt = 17_ .
t=2 v

The discounted sum of rewards for the red trajectory is
o
8+°
_ t __
R(Tred) = 8;7 —1_ 'Y'

If R(Thiue) > R(Tred), then the blue trajectory is preferred compared to the red trajectory,
otherwise the red trajectory is preferred compared to the blue trajectory. Therefore, the red
trajectory is preferred when 1 > v > % and the blue trajectory is preferred when % >y > 0.

12



