Exercise 1. (Gridworld)

Consider the gridworld setup, in which an agent (for example, a robot) is moving in a 2D plane. The plane is modeled by a discrete grid, as shown in Figure 1. We refer to the bottom left corner as (1,1) and the top right corner as (3,3). The initial distribution is $\rho((1,1)) = 1$, which means that the agent starts in cell (1,1) with probability 1. The agent can choose from four actions: $\mathcal{A} = \{\text{`up'}, \text{`down'}, \text{`left'}, \text{`right'}\}$. When the agent arrives at cell (3, 1) for any action $a \in \mathcal{A}$, the agent receives a reward of 1. When the agent arrives at cell (3, 2) for any action $a \in \mathcal{A}$, the agent receives a reward of 8. The gray walls and the gridworld boundary block the agent's path, specifically the wall on cell (2,2). The agent's actions do not always go as planned:

- 1) 85% of the time, the agent takes the intended action.
- 2) 15% of the time, the agent uniformly takes any of the other three actions.
- 3) If there is a wall in the direction the agent would have taken, the agent remains in place. Once the agent reaches a rewarded cell, it stays there forever, i.e., those are terminal states.

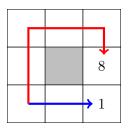


Figure 1: Gridworld

1. For the states s = (1, 1) and s = (1, 2), determine the transition probabilities $P(\cdot | s, a)$ for any $a \in \mathcal{A}$.

Solution: For the state s = (1, 1), the transition probabilities are

P(s' s,a)	a = `up'	a = 'down'	a = 'left'	a = `right'
s' = (1,1)	0.1	0.9	0.9	0.1
s' = (1, 2)	0.85	0.05	0.05	0.05
s' = (2,1)	0.05	0.05	0.05	0.85

For the state s = (1, 2), the transition probabilities are

P(s' s,a)	a = `up'	a = 'down'	a = 'left'	a = `right'	
s' = (1, 2)	0.1	0.1	0.9	0.9	
s' = (1, 3)	0.85	0.05	0.05	0.05	'
s' = (1, 1)	0.05	0.85	0.05	0.05	

2. Using direct parametrization of the policy, $\pi_{\theta}(a|s) = \theta_{s,a}$, how many parameters are there? What is the possible range for each parameter?

Solution: We need a parameter for each state action pair $(s, a) \in \mathcal{S} \times \mathcal{A}$. There are 8 states $(\mathcal{S} = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (3, 3)\})$ and four actions. Hence, there are $|\mathcal{S}||\mathcal{A}| = 32$ parameters.

For each parameter $\theta_{s,a}$, we need to ensure it satisfies the following condition:

$$0 \le \theta_{s,a} \le 1, \sum_{a' \in \mathcal{A}} \theta_{s,a'} = 1.$$

Comment: It would also be correct to use 36 parameters where we consider 9 states including the gray cell.

3. Using softmax parametrization of the policy, $\pi_{\theta}(a|s) = \frac{\exp(\theta_{s,a})}{\sum_{a' \in \mathcal{A}} \exp(\theta_{s,a'})}$, how many parameters are there?

Solution: Similarly to Problem 2, we need 32 parameters (or 36 when counting the gray grid cell as a state).

4. From now on, we will always assume the policy is parameterized with softmax. We initialize the parameters as $\theta = \mathbf{0} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$. What is the initial policy?

Solution: It is a uniform distribution over the action set {'up', 'down', 'left', 'right'} as

$$\pi_{\theta}(a|s) = \frac{\exp\left(\theta_{s,a}\right)}{\sum_{a' \in \mathcal{A}} \exp\left(\theta_{s,a'}\right)} = \frac{\exp\left(0\right)}{\sum_{a' \in \mathcal{A}} \exp\left(0\right)} = \frac{1}{4}.$$

5. Next, we consider two trajectories sampled from the initial softmax policy and truncated to a horizon H = 7. The first trajectory τ_1 is given by

$$(1,1) \xrightarrow{\mathrm{up}} (1,2) \xrightarrow{\mathrm{up}} (1,3) \xrightarrow{\mathrm{right}} (2,3) \xrightarrow{\mathrm{right}} (3,3) \xrightarrow{\mathrm{right}} (3,3) \xrightarrow{\mathrm{down}} (3,2) \xrightarrow{\mathrm{down}} (3,2) \xrightarrow{\mathrm{left}} .$$

The second trajectory τ_2 is given by

$$(1,1) \xrightarrow[\mathrm{right}]{} (2,1) \xrightarrow[\mathrm{right}]{} (1,1) \xrightarrow[\mathrm{right}]{} (2,1) \xrightarrow[\mathrm{right}]{} (3,1) \xrightarrow[\mathrm{right}]{} (3,1$$

For each trajectory $\tau := \{s_0, a_0, s_1, a_1, \dots, s_H, a_H\}$, the discounted reward is computed as $R(\tau) := \sum_{t=0}^{H} \gamma^t r(s_t, a_t)$, where $r(s_t, a_t)$ denotes the reward at each step along the trajectory. The probability of choosing τ is $\Pr(\tau) = \rho(s_0) \pi_{\theta}(a_0|s_0) \prod_{t=1}^{H-1} P(s_t|s_{t-1}, a_{t-1}) \pi(a_t|s_t)$. What are the probabilities of choosing τ_1 and τ_2 ? What are the discounted rewards for these trajectories?

Continue here

Solution: The probability of choosing the first trajectory τ_1 is

$$\Pr(\tau_{1}) = \underbrace{\rho((1,1))}_{1} \underbrace{\pi(\text{up}|(1,1))}_{0.25} \underbrace{P((1,2)|(1,1), \text{up})}_{0.85} \underbrace{\pi(\text{up}|(1,2))}_{0.25} \underbrace{P((1,3)|(1,2), \text{up})}_{0.85} \underbrace{\pi(\text{right}|(2,3))}_{0.25} \times \underbrace{P((2,3)|(1,3), \text{right})}_{0.85} \underbrace{\pi(\text{right}|(2,3))}_{0.25} \underbrace{P((3,3)|(2,3), \text{right})}_{0.85} \underbrace{\pi(\text{right}|(3,3))}_{0.25} \times \underbrace{P((3,3)|(3,3), \text{right})}_{0.9} \underbrace{\pi(\text{down}|(3,3))}_{0.25} \underbrace{P((3,2)|(3,2), \text{down})}_{0.85} \underbrace{\pi(\text{down}|(3,2))}_{0.25} \times \underbrace{P((3,2)|(3,2), \text{down})}_{1} \underbrace{\pi(\text{left}|(3,2))}_{0.25} \approx 6.1 \cdot 10^{-6}.$$

Similarly, for trajectory τ_2 we have

$$\Pr(\tau_2) = 1 \cdot 0.25 \cdot 0.85 \cdot 0.25 \cdot 0.05 \cdot 0.25 \cdot 0.85 \cdot 0.25 \cdot 0.85 \cdot 0.25 \cdot 1 \cdot 0.25 \cdot 1 \cdot 0.25 \cdot 1 \cdot 0.25$$

$$\approx 4.7 \cdot 10^{-7}.$$

The discounted reward for the first trajectory τ_1 is

$$R(\tau_1) = 8(\gamma^6 + \gamma^7).$$

The discounted reward for the second trajectory τ_2 is

$$R(\tau_2) = \gamma^4 + \gamma^5 + \gamma^6 + \gamma^7 = \frac{\gamma^4 (1 - \gamma^4)}{1 - \gamma}.$$

6. Calculate $\nabla_{\theta} \log \pi_{\theta}(a|s)$.

Solution: The components of $\nabla_{\theta} \log \pi_{\theta}(a|s) \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ are $\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta_{s',a'}}$ for all $s' \in \mathcal{S}$ and all $a' \in \mathcal{A}$. The partial derivatives with respect to the parameter $\theta_{s',a'}$ can be computed as

$$\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta_{s',a'}}$$

$$= \frac{\partial}{\partial \theta_{s',a'}} \left(\log \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})} \right) \qquad \text{(by definition of softmax policy parameterization)}$$

$$= \frac{\partial}{\partial \theta_{s',a'}} \left(\theta_{s,a} - \log \sum_{a'} \exp(\theta_{s,a'}) \right) \qquad \text{(by additive property of logarithmic function)}$$

$$= \mathbf{1}_{(s,a)=(s',a')} - \mathbf{1}_{s=s'} \frac{\exp(\theta_{s,a'})}{\sum_{a'} \exp(\theta_{s,a'})} \qquad \text{(basic derivative rules)}$$

$$= \mathbf{1}_{(s,a)=(s',a')} - \mathbf{1}_{s=s'} \pi_{\theta}(a'|s) \qquad \text{(by definition of softmax policy parameterization)}$$

$$= \mathbf{1}_{s=s'} \left(\mathbf{1}_{a=a'} - \pi_{\theta}(a'|s) \right) \qquad \text{(take } \mathbf{1}_{s=s'} \text{ outside of the equation)}.$$

Thus,

$$\nabla_{\theta} \log \pi_{\theta}(a|s) = \{ \mathbf{1}_{s=s'} \left(\mathbf{1}_{a=a'} - \pi_{\theta}(a'|s) \right) \}_{(s',a') \in \mathcal{S} \times \mathcal{A}}. \tag{0.1}$$

Reminder: Here, we denote $\mathbf{1}_{\mathcal{A}}$ as an indicator function, which equals 1 when event \mathcal{A} happens and 0 otherwise.

Example:

$$\begin{split} & \nabla_{\theta_{(1,1),\text{up}}} \log \pi_{\theta}(\text{up}|(1,2)) = \mathbf{1}_{(1,1)=(1,2)} \left(\mathbf{1}_{\text{up}=\text{up}} - \pi_{\theta}(\text{up}|(1,1)) \right) = 0, \\ & \nabla_{\theta_{(1,1),\text{up}}} \log \pi_{\theta}(\text{up}|(1,1)) = \mathbf{1}_{(1,1)=(1,1)} \left(\mathbf{1}_{\text{up}=\text{up}} - \pi_{\theta}(\text{up}|(1,1)) \right) = 1 - \pi_{\theta}(\text{up}|(1,1)), \\ & \nabla_{\theta_{(1,1),\text{down}}} \log \pi_{\theta}(\text{up}|(1,1)) = \mathbf{1}_{(1,1)=(1,1)} \left(\mathbf{1}_{\text{down}=\text{up}} - \pi_{\theta}(\text{down}|(1,1)) \right) = -\pi_{\theta}(\text{down}|(1,1)). \end{split}$$

7. Consider a discount factor of $\gamma = 0.8$ and the parameter $\theta = \mathbf{0}$. Based on the two aforementioned trajectories, τ_1 and τ_2 , provided in Problem 5, compute the stochastic policy gradient

$$\hat{\nabla}_{\theta_{(1,1),a}} J(\pi_{\theta}) = \frac{1}{2} \sum_{i=1}^{2} \underbrace{\left(\sum_{t=0}^{H} \gamma^{t} r(s_{t}^{i}, a_{t}^{i})\right)}_{R(\tau_{i})} \left(\sum_{t=0}^{H} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i})\right),$$

for the state s = (1, 1), actions $a \in \mathcal{A}$, and the horizon H = 7.

Continue here:

Continue here:

Solution: Using the trajectories defined in Problem 5, we first calculate for i = 1, 2:

$$\left(\hat{\nabla}_{\theta_{(1,1),a}} J(\pi_{\theta})\right)_{i} = \underbrace{\left(\sum_{t=0}^{H} \gamma^{t} r(s_{t}^{i}, a_{t}^{i})\right)}_{R(\tau_{i})} \left(\sum_{t=0}^{H} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i})\right),$$

For the first trajectory, we get

$$\begin{pmatrix}
\ddot{\nabla}_{\theta_{(1,1),\text{up}}} J(\pi_{\theta}) \\
\dot{\nabla}_{\theta_{(1,1),\text{down}}} J(\pi_{\theta}) \\
\dot{\nabla}_{\theta_{(1,1),\text{left}}} J(\pi_{\theta}) \\
\dot{\nabla}_{\theta_{(1,1),\text{right}}} J(\pi_{\theta})
\end{pmatrix}_{1} = R(\tau_{1}) \times \begin{pmatrix}
7 \\
\sum_{t=0}^{7} \begin{pmatrix}
\nabla_{\theta_{(1,1),\text{up}}} \log \pi(a_{t}|s_{t}) \\
\nabla_{\theta_{(1,1),\text{left}}} \log \pi(a_{t}|s_{t}) \\
\nabla_{\theta_{(1,1),\text{right}}} \log \pi(a_{t}|s_{t})
\end{pmatrix}$$

$$= 8 \left(\gamma^{6} + \gamma^{7}\right) \times \begin{pmatrix}
\nabla_{\theta_{(1,1),\text{up}}} \log \pi(\text{up}|(1,1)) \\
\nabla_{\theta_{(1,1),\text{down}}} \log \pi(\text{up}|(1,1)) \\
\nabla_{\theta_{(1,1),\text{right}}} \log \pi(\text{up}|(1,1)) \\
\nabla_{\theta_{(1,1),\text{right}}} \log \pi(\text{up}|(1,1))
\end{pmatrix}$$

$$= 8 \left(\gamma^{6} + \gamma^{7}\right) \begin{pmatrix}
0.75 \\
-0.25 \\
-0.25 \\
-0.25
\end{pmatrix} \approx \begin{pmatrix}
2.83 \\
-0.94 \\
-0.94 \\
-0.94
\end{pmatrix},$$

The second equation utilizes the formula from (0.1), which equals 0 if the state $s_t \neq (1,1)$. In the first trajectory, only the initial state visits the state (1,1). Hence, the summation from t=1 to t=7 amounts to computing t=1 since the remaining terms are equal to 0. The third equation involves substituting the policy values into the aforementioned equation (0.1).

And for the second trajectory

$$\begin{pmatrix}
\hat{\nabla}_{\theta_{(1,1),\text{up}}} J(\pi_{\theta}) \\
\hat{\nabla}_{\theta_{(1,1),\text{down}}} J(\pi_{\theta}) \\
\hat{\nabla}_{\theta_{(1,1),\text{down}}} J(\pi_{\theta}) \\
\hat{\nabla}_{\theta_{(1,1),\text{left}}} J(\pi_{\theta})
\end{pmatrix} = R(\tau_{2}) \times \begin{pmatrix}
\sum_{t=0}^{7} \begin{pmatrix}
\nabla_{\theta_{(1,1),\text{up}}} \log \pi(a_{t}|s_{t}) \\
\nabla_{\theta_{(1,1),\text{left}}} \log \pi(a_{t}|s_{t}) \\
\nabla_{\theta_{(1,1),\text{right}}} \log \pi(a_{t}|s_{t})
\end{pmatrix}$$

$$= \frac{2\gamma^{4}(1-\gamma^{4})}{1-\gamma} \times \begin{pmatrix}
\nabla_{\theta_{(1,1),\text{up}}} \log \pi(\text{right}|(1,1)) \\
\nabla_{\theta_{(1,1),\text{down}}} \log \pi(\text{right}|(1,1)) \\
\nabla_{\theta_{(1,1),\text{right}}} \log \pi(\text{right}|(1,1)) \\
\nabla_{\theta_{(1,1),\text{right}}} \log \pi(\text{right}|(1,1))
\end{pmatrix}$$

$$= \frac{2\gamma^{4}(1-\gamma^{4})}{1-\gamma} \begin{pmatrix}
-0.25 \\
-0.25 \\
0.75
\end{pmatrix} \approx \begin{pmatrix}
-0.60 \\
-0.60 \\
-0.60 \\
1.81
\end{pmatrix}.$$

The factor of 2 in the second equation arises because the agent visits state (1,1) twice and takes the same action, 'right,' on both occasions.

Hence, the stochastic policy gradient is given by

$$\begin{pmatrix}
\hat{\nabla}_{\theta_{(1,1),\text{up}}} J(\pi_{\theta}) \\
\hat{\nabla}_{\theta_{(1,1),\text{down}}} J(\pi_{\theta}) \\
\hat{\nabla}_{\theta_{(1,1),\text{left}}} J(\pi_{\theta}) \\
\hat{\nabla}_{\theta_{(1,1),\text{right}}} J(\pi_{\theta})
\end{pmatrix} = \frac{1}{2} \sum_{i=1}^{2} \begin{pmatrix}
\hat{\nabla}_{\theta_{(1,1),\text{up}}} J(\pi_{\theta}) \\
\hat{\nabla}_{\theta_{(1,1),\text{left}}} J(\pi_{\theta}) \\
\hat{\nabla}_{\theta_{(1,1),\text{right}}} J(\pi_{\theta})
\end{pmatrix}_{i} \approx \begin{pmatrix}
1.12 \\
-0.77 \\
-0.77 \\
0.44
\end{pmatrix}.$$

8. Assuming $\theta = \mathbf{0} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$, compute the stochastic policy gradient update

$$\theta_{(1,1),a} \leftarrow \theta_{(1,1),a} + \alpha \hat{\nabla}_{\theta_{(1,1),a}} J(\pi_{\theta}), \ \theta_{(1,1),a} \in \mathbb{R}^1,$$

for the state s=(1,1) and every action $a\in\mathcal{A}$ with $\alpha=0.1$. Moreover, compute the updated policy for s=(1,1).

Solution: According to the above update rule, we can compute the updated $\theta_{(1,1),a}$, $a \in \mathcal{A}$ as

$$\begin{pmatrix} \theta_{(1,1),\text{up}} \\ \theta_{(1,1),\text{down}} \\ \theta_{(1,1),\text{left}} \\ \theta_{(1,1),\text{right}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 0.1 \begin{pmatrix} \hat{\nabla}_{\theta_{(1,1),\text{up}}} J(\pi_{\theta}) \\ \hat{\nabla}_{\theta_{(1,1),\text{down}}} J(\pi_{\theta}) \\ \hat{\nabla}_{\theta_{(1,1),\text{right}}} J(\pi_{\theta}) \\ \hat{\nabla}_{\theta_{(1,1),\text{right}}} J(\pi_{\theta}) \end{pmatrix} \approx \begin{pmatrix} 0.112 \\ -0.077 \\ -0.077 \\ 0.044 \end{pmatrix}.$$

This yields to the following updated policy for the state s = (1, 1)

$$\pi_{\theta}(\text{up}|(1,1)) = \frac{\exp\left(\theta_{(1,1),\text{up}}\right)}{\sum_{a'} \exp\left(\theta_{(1,1),a'}\right)} \approx 0.28,$$

$$\pi_{\theta}(\text{down}|(1,1)) \approx 0.23, \ \pi_{\theta}(\text{left}|(1,1)) \approx 0.23, \ \pi_{\theta}(\text{right}|(1,1)) \approx 0.26.$$

9. Now, assume that there is no noise, i.e., the agent always moves in the intended direction if the action leads to a free cell and otherwise stays in its previous cell. What are the discounted sums of rewards for the red and blue trajectory (for an infinite horizon)? How to choose γ to ensure that the blue trajectory is preferred over the red one?

Solution: The discounted sum of rewards for the blue trajectory is

$$R(\tau_{\text{blue}}) = \sum_{t=2}^{\infty} \gamma^t = \frac{\gamma^2}{1-\gamma}.$$

The discounted sum of rewards for the red trajectory is

$$R(\tau_{\rm red}) = 8 \sum_{t=5}^{\infty} \gamma^t = \frac{8\gamma^5}{1 - \gamma}.$$

If $R(\tau_{\rm blue}) > R(\tau_{\rm red})$, then the blue trajectory is preferred compared to the red trajectory, otherwise the red trajectory is preferred compared to the blue trajectory. Therefore, the red trajectory is preferred when $1 > \gamma > \frac{1}{2}$ and the blue trajectory is preferred when $\frac{1}{2} > \gamma > 0$.